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Abstract. The role of the band structure in the Verwey transition in magnetite (Fe3O4) has
been analysed within the framework of an exactly solvable two-band model based on an effective
interionic Coulomb potential splitting the 3d band of the t2g electrons. The model predicts an
instability of the Verwey order below a certain ratio β/W of the Coulomb interaction parameter
β and the bandwidth W . This instability can be understood in terms of a clear physical picture
showing the impossibility of constructing a self-consistent ordered charge distribution in this case.
A resemblance to the Cullen–Callen criterion is evident. It is shown as well that the influence
of the band structure on the Verwey temperature vanishes rapidly when β/W increase beyond its
critical value. Band-structure effects do provide an explanation, however, for the discontinuity
in the Verwey temperature as a function of the concentration of cation dopants or the oxygen
stoichiometry, which marks the transition from a first- to a second-order Verwey transition. In this
respect, the model reproduces the experimental data quantitatively. Fits obtained by application
of the model yield values of 0.037–0.04 eV for the Coulomb gap and 0.012–0.014 eV for the
bandwidth. The obtained values of the bandwidth are typical for a strongly localized electron
system and support a polaronic band picture.

1. Introduction

Being widely applied as magnetic materials, ferrites are among the most intensively
investigated oxides. Magnetite (Fe3O4) is a well known representative of the so-called spinel
ferrites which are best known for their soft magnetic properties.

As early as the 1920s, the interesting physical properties of magnetite attracted the
attention of investigators, leading to the discovery of a temperature-induced phase transition
near 120 K, which manifests itself in anomalies in the thermal expansion [1] as well as in
the calorimetric [2] and magnetic [3] properties. Soon after its discovery, Verwey suggested,
on the basis of measurements of the electrical conductivity, that the phase transition actually
originates from an ordering process of the Fe2+ and Fe3+ ions at the octahedral Fe sublattice
in the spinel structure, or equivalently from an ordering of 3d electrons (t2g) at the octahedral
sublattice [4, 5]. This viewpoint is now widely accepted and the phase transition, meanwhile
known as the Verwey transition, has been the subject of numerous investigations. For a long
time the driving mechanism responsible for the transition has been the subject of speculation,
although it may be obvious that, because of the nature of the transition, the interionic Coulomb
interaction (Madelung energy) is likely to play an important role. Among many interesting
other aspects, the thermodynamics of the Verwey transition is in itself remarkable. Not only
present in pure but also in lightly doped magnetite, the Verwey transition manifests itself for
instance as a first-order transition (pure magnetite and low dopant concentration or cation
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Figure 1. Simplified band structure of magnetite. The two bands correspond to the a and the b
sublattices. The bands are separated by a gap due to the interionic Coulomb interaction. At T = 0,
the lower band is completely filled whereas the upper band is completely empty. The Fermi level
lies exactly in between the band minima.

deficiency) as well as a second-order transition (high Ti4+ or Zn2+-dopant concentration or
cation deficiency) [6]. Various theoretical treatments of the Verwey transition have been
presented in the past. Recently the present authors presented a mean-field approach to the
Verwey transition based on an effective interionic Coulomb potential [7, 8], explaining and
reproducing various aspects of the Verwey transition from both a qualitative as well as a
quantitative point of view. Within our mean-field approach, the octahedral Fe sublattice is
considered as being split up into two equivalent sublattices a and b. Ordering effects appear as
differences in Fe2+ occupation of these sublattices. The 3d levels are treated within a simplified
scheme of two distinctive levels, each level corresponding to an electron residing at a particular
sublattice. Among the aspects correctly reproduced in such an approach are the shift of the
Verwey temperature TV as a result of doping with different transition-metal ions. Also the
sharp boundary between a first-and a second-order regime of Verwey transitions, passed upon
increasing the doping of magnetite with Zn2+ or Ti4+ ions, was explained in a satisfactory
way by taking into account the effect of structural changes. One aspect of this transition not
explained by our model, however, is the sharp discontinuous drop of the Verwey temperature of
about 5% upon passing the boundary between the first- and second-order regime. Although the
mathematical analysis yields two regimes of qualitatively completely different phase transitions
of first and second order respectively, the Verwey temperature follows a continuous curve when
the boundary between the two regimes is crossed in our previous approach. It seems obvious
that this shortcoming of our model may be related to the description of the octahedral t2g
levels in terms of a two-level system. Upon a gradual disordering (second-order transition),
the gap between the levels closes and only at T = TV do both levels coalesce and become
equally occupied (i.e. the Fe2+ ions are equally distributed over both sublattices). Replacing
the two sharp levels by two bands of finite width yields a qualitatively slightly different picture
(figure 1). In the case of incomplete ordering, occurring at sufficiently high temperatures, the
t2g electrons are partially distributed over both sublattices, and a band overlap may appear when
the (Coulomb) gap becomes sufficiently small. The t2g states located within the overlapping
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sections of the bands become equally occupied already at T < TV and the asymmetry of the
sublattice occupation will therefore be reduced (in the case of identical bands the states in the
overlapping band sections do no longer contribute to this asymmetry at all). A relation between
the width of both sublattice bands and the Verwey temperature therefore seems evident. To
verify this hypothesis we present an extension of our model based upon a simplified level
scheme consisting of two bands of finite width. A major simplification is achieved by the
assumption of a uniform density of states for all energies within the two bands, allowing a
simple algebraic solution to the model.

2. Theoretical outline

2.1. Description of the model

In the single-electron level scheme of magnetite, the 3d electrons at the octahedral sublattice
can be grouped together into ten spin-up electrons and a single spin-down (t2g) electron (per
formula unit Fe3O4) [9]. The unpaired spin-down electrons correspond to the Fe2+ ions and
are in fact responsible for the Verwey ordering.

In accordance with previous work [7, 8] the octahedral sublattice is considered as being
split up into two equivalent sublattices (a and b). A charge density wave can then be viewed as an
asymmetric spin-down electron occupation (Fe2+ occupation) of these sublattices. We describe
the spin-down levels as band states with, however, still a high degree of localization (narrow-
band approximation). The interionic Coulomb interaction (which includes the unscreened
interaction between a t2g electron and all other t2g electrons) can then easily be described within
a mean-field formalism [7]. Predominantly because of this interionic Coulomb interaction, the
energy levels of the spin-down electrons are split [10]. As a result two bands appear, separated
by a gap [7], each band being related in real space to one of the sublattices a or b. This
approach in terms of ‘sublattice bands’ is justified when the interionic Coulomb interaction
(splitting the bands) is large enough compared to the hopping integral. The results of [7]
and [8] indeed suggest that the electronic structure of magnetite below TV can be described
successfully in terms of electrons which are thermally excited from one sublattice to another.
However, the clearest evidence for a relation between the spatial position of the t2g electrons and
their single-electron states and levels comes from magnetic after-effect (MAE) measurements,
which show a significant magnetic relaxation below TV , abruptly collapsing at the Verwey
transition [11, 12]. Related to the thermal relaxation of the position of the domain walls,
the observed MAE can, in view of the absence of drastic changes in the intrinsic magnetic
properties at TV , only be related to a thermal relaxation of the t2g electron system in terms of
a thermally activated change in the position of the t2g electrons. Indeed, the MAE spectra of
magnetite can be quantitatively described by the assumption of integral valence sites, i.e. Fe2+

and Fe3+ ions, related to t2g electrons involved in a process of thermally activated hopping from
one site to another [11]. A description of the electronic structure of magnetite based on bands
corresponding to electrons residing at only one sublattice therefore seems a good starting point
for an analysis of the role of band structure effects in the Verwey transition.

Following Cullen and Callen [13], we furthermore assume that the orbital degeneracy is
lifted by the crystal field, such that only one orbital contributes to the part of the t2g band
structure relevant for the Verwey transition. Such an approach has been deployed by many
authors and proved to be quite useful in describing at least the gross features of the Verwey
transition. The success of the approach outlined in [7] and [8] to describe the Verwey transition
in both a qualitative and quantitative way, obtained without taking orbital degeneracy into
account, suggests that we can indeed refrain from taking orbital degeneracy into consideration.
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The density of states of each band can then be taken such that a completely filled band contains
all t2g electrons (it is shown in appendix A that this is a correct point of view).

Because of the Coulomb gap separating them, the occupations of the two sublattice bands
will significantly differ at low temperatures, resulting in a charge-density wave. A simplified
two-band level scheme for the spin-down 3d electrons is presented in figure 1. We consider two
equivalent bands of equal widthW and uniform density of states, identical for both sublattices.
The difference between the two band minima, caused by the interionic Coulomb interaction,
is indicated as UC .

When treated within the narrow-band mean-field approximation outlined in [7] and [8], the
contribution of the interionic Coulomb interaction to the effective one-electron Hamiltonian
can be described as an on-site constant Ua,bi for all t2g electrons at one of the octahedral
sublattices (a or b). As a result we have a simple lowest-order perturbation problem for the
description of the spin-down electron levels for both sublattices (bands). We define H0 as
the unperturbed Hamiltonian incorporating all interactions except the Coulomb interaction
between the unpaired electron and�0 as an eigenstate ofH0 with eigenvalue E0. Considering
U
a,b
i as perturbation of H0 we have, in a lowest-order approximation: (H0 + Ua,bi )�0 =
(E0 + Ua,bi )�0. The energy levels E0 of the spin-down electrons are shifted according to
their respective sublattices (a or b) at which they reside over corresponding energy intervals
Uai or Ubi , whereas the wavefunctions do not change at all. A gap Ug between the sublattice
bands occurs, which is related to the shift of the band minima UC and the bandwidth W :
Ug = UC −W . Of course: UC = Ubi − Uai .

When Ug > 0, the lower band is completely filled and the upper band completely empty
at zero temperature (consistent with the non-metallic state of magnetite for T < TV ). The
distribution of the t2g electrons over the a and b sublattices (Na andNb) as a function of T can
be evaluated easily. In the case of a uniform DOS,D, the number of electrons N in an energy
intervalE < E′ < E +�E at a particular temperature T can be expressed in terms of a simple
Fermi–Dirac integral:

N = D

∫ E+�E

E

f (E) dE = D[(E − EF )− kT log(1 + e
E−EF
kT )]|E+�E

E (1)

where f (E) represents the Fermi–Dirac distribution and EF the Fermi level. Taking for N
the total number of t2g electrons, the DOS can be expressed asD = N/W . ForNa andNb we
then have, by defining the band minimum of the a-sublattice band as E = 0 and substitution
of the respective band edges of the a- and b-sublattice bands for E and E +�E into (1),

Na = N +
kT N

W
log

1 + e−EF /kT

1 + e(W−EF )/kT

Nb = N +
kT N

W
log

1 + e(UC−EF )/kT

1 + e(W+UC−EF )/kT . (2)

The Fermi level can be determined from these equations and the condition Na + Nb = N .
After some algebra we have, for all temperatures:

EF = UC +W

2
(3)

i.e. an expression which describes a Fermi level exactly in the middle of the gap. Equations (2)
and (3) enable us to express the degree of occupation g = Na/N of the a-sublattice by t2g
electrons in terms of UC , W and T :

g = 1 +
kT

W
log

1 + e−(UC+W)/2kT

1 + e−(UC−W)/2kT . (4)
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The situation g = 1/2 corresponds to a disordered state whereas all other values of g between
0 and 1 correspond to a (partially) ordered state with either a majority of the t2g electrons at the
a sublattice (g > 1/2) or the b sublattice (g < 1/2). The quantity r = |2g − 1| may serve as
an appropriate order parameter as it varies between r = 1 in the fully ordered state and r = 0
in the disordered state.

A few remarks on the general validity of equation (4) should be made at this stage. The
concept of band states related to an electron residing at a single sublattice is certainly valid
at lower temperatures when the Coulomb splitting is sufficiently large. When, due to thermal
excitation of electrons to the other band, the Coulomb splitting has decreased sufficiently, a
regime of band overlap is finally reached. The states in the overlapping parts of the bands
have an equal occupation and they change their nature by adopting an equally mixed a-and
b-sublattice character: they no longer contribute to the asymmetric t2g charge distribution over
both sublattices. This effect is numerically dealt with in a proper way by equations (2) and (4).
Although these equations do not specifically count for the change of the electron states in the
overlapping band sections, the same degree of occupation is attributed to them, and therefore
their net contribution to the charge density wave automatically vanishes. It is conceivable that
also the states near the overlapping band sections may undergo some changes and that even
when there is still no band overlap but UC has decreased drastically states of a slightly mixed
a or b character may occur. We assume however that, apart from temperatures very close
to TV , the influence of such changes is small in order to maintain a simple solvable model,
which still captures some essential features of the Verwey transition however. Equation (4)
is thereby considered as a good approximation even at high temperatures. A more exact
analysis, for instance in terms of a tight-binding approach, including the variation of the electron
states upon disordering, does not even make sense since the geometry of the sublattices, one
of the necessary requirements for such an analysis, is still a highly controversial subject at
present.

The shift, due to the interelectronic Coulomb interaction, of the band minima of the a and
b bands (UC) can be expressed in terms of g on the basis of previous work [7]:

UC = (2g − 1)β (5)

where β is a parameter related to the interionic Coulomb splitting U = β of both bands in the
fully ordered state.

Combination of (4) and (5) shows g as a solution of the equation

g = 1 +
kT

W
log

1 + e−[(2g−1)β+W ]/2kT

1 + e−[(2g−1)β−W ]/2kT
= F(g). (6)

This equation cannot be solved exactly by algebraic methods, but requires a numerical
procedure or a graphical solution, the latter being quite elucidating.

An illustration of such a graphical solution for W = 0.25β is given in figures 2(a)–(c),
showing the function F(g) for 0 < g < 1 and β > 0 at three different temperatures, as well
as the straight line f (g) = g. The intersections of F(g) and f (g) correspond to solutions of
equation (6). At T = 0 (figure 2(a)) there are three solutions: g = 0, g = 1 and g = 1/2. The
solution g = 1/2 corresponds to the disordered state while the remaining two solutions are
related to equivalent ordered states. They represent the states of lowest free enthalpy below
TV , where ordering decreases the internal energy U [7, 8] and competes with the entropy term
in the free enthalpy. The solution g = 1 corresponds to a situation where all t2g electrons
are at the a sublattice, the b sublattice being completely empty, whereas the solution g = 0
represents the reversed situation. The equivalence of both sublattices implies the equivalence
of these two ordered-states. From the results reported in [8], it can be shown that in the ordered
state the a-band levels are situated at � = UC/2 under the corresponding levels in the fully
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Figure 2. illustration of the graphical solution to equation (6). F(g) is calculated for a = 4. At
T = 0 (a) three solutions appear: two corresponding to an ordered state (g = 0, g = 1) and one to
a disordered state for g = 1/2. With increasing temperature disordering sets in (b) until g = 1/2
is the only solution left at T = TV (c).
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Figure 3. Variation of TV with a.

disordered state (g = 1/2), whereas the b-band levels are lying at � = UC/2 above their
corresponding levels for g = 1/2 (see figure 1).

At finite temperatures, the positions of the ordered states gradually move closer tog = 1/2,
the typical characteristic of a process of gradual disordering (figure 2(b)). The Verwey
temperature, TV , can be identified as the temperature for which g = 1/2 becomes the only
solution, marking the overall collapse of ordering (figure 2(c)). Naturally, g = 1/2 remains a
solution of (6) for T > TV , representing the disordered state.

Inspection of the basic features of the functionF(g) and its development with temperature
shows that an ordered state is only possible when the derivative ∂F (g)/∂g > 1 for g = 1/2.
The Verwey temperature actually marks the temperature for which ∂F (g)/∂g = 1 for g = 1/2.
This allows us to find an explicit expression for TV within the context of the model.

For g = 1/2 we have

∂F (g)

∂g
= β

W

eW/2kT − e−W/2kT

2 + eW/2kT + e−W/2kT = 1. (7)

With a = β/W , solving for exp(W/2kT ) yields

eW/2kT = a + 1

a − 1
(8)

and consequently

TV = 1

a log[(a + 1)/(a − 1)]

β

2k
. (9)

Equations (8) and (9) show that the ratio between the Coulomb-interaction parameter β and the
bandwidth inW has a pronounced effect on TV . For a fixed value of β the Verwey temperature
decreases with increasing W (decreasing a), as illustrated by figure 3, showing the relative
variation ofTV with a. The reason for this decrease is primarily the occurrence of a bandoverlap
at a certain temperature T < TV . Since the bandshift (Coulomb splitting) is related exclusively
to the asymmetry in the sublattice occupations, it is clear that the overlapping parts of both
bands do not contribute to this bandshift, as they represent an equal number of electrons in each
sublattice/band, thereby reducing Uc. A band overlap supports in this way the collapse of the
Verwey ordering with temperature, an effect becoming stronger with increasing W . The two



5444 J H V J Brabers et al

level description outlined in the previous work is actually a limiting case of zero bandwidth:
forW → 0 (a → ∞) the basic result for the two level system, T 0

V = β/4k [7, 8], immediately
follows from the band model.

2.2. Stability of the Verwey order

A remarkable feature of figure 3 is the complete disappearance of TV for a = 1 (TV → 0
when a → 1). Apparently, the Verwey ordering becomes unstable when β/W = 1. A
similar effect also occurs in the Cullen–Callen model [13–15]. On the basis of a Hartree
approximation including nearest-neighbour Coulomb interactions and a hopping integral, t ,
Cullen and Callen found in their calculations that the Verwey order disappears below a critical
ratioRc between the (nearest-neighbour) Coulomb interaction parameterU and the bandwidth
W ∝ t : Rc = U/w = 2.2 [13]. This observation is known as the Cullen–Callen criterion. It
is interesting to observe that by replacing U with β, which represents the Coulomb interaction
parameter in our model, we obtain a criterion similar to the Cullen–Callen criterion, predicting
a collapse of ordering at Rc = β/W = 1. The occurrence of this criterion in the present
model, however, is not a unique artefact of the rectangular DOS which is assumed for both
bands, but can be shown to apply equally well to a wide class of DOS functions taken into
consideration. The condition β/W < 1 means that if a stable state exists, the bands overlap
at T = 0. It is easy to see that, regardless of the actual shape of D(E) and the ratio β/W ,
the disordered state (g = 1/2) is in fact a stable solution in this case. When β/W < 1, a
(partially) ordered state however, with an occupation of the a sublattice g �= 1/2, is possible
at T = 0 only when the set of equations

1

N

∫ EF

0
D(E) dE = g

∫ EF

0
D(E) dE +

∫ EF

UC(g)

D(E − UC(g)) dE = N

with UC = β(2g − 1) is solvable for g �= 1/2 and EF as well. This is only the case for
a limited class of functions D(E) (of course not including a rectangular DOS, as may be
verified easily). Therefore, the validity of the criterion β/W > 1 goes even beyond the
rectangular DOS assumed in the above. As a result, a relevant viewpoint on the stability
of the Verwey order emerges from a few simple concepts. The criterion β/W = 1 (being
to some extent equivalent to the Cullen–Callen criterion) appears as a direct consequence of
the impossibility of constructing a self-consistent, ordered charge distribution below a certain
ratio of the Coulomb interaction and the bandwidth, even at T = 0. It is conceivable that
even when the electron states change and adopt a mixed a and b character such a critical ratio
still exists within the context of our model. g should then be calculated by integration over
both bands, thereby including the a-sublattice occupation of each state as an extra factor in the
integrand.

3. Differences between the Verwey transition in the first- and second-order regime:
volume and band structure effects

As already mentioned in the introduction, the Verwey transition can manifest itself as a first- or a
second-order transition depending on the cation doping of oxygen stoichiometry. The possible
origin of the occurrence of these two regimes was outlined in a previous publication [8]. There
it was shown that, within an approximation, the first-order transition consists of a discontinuous
change from a fully ordered into a fully disordered state, whereas the second-order transition
is based on a gradual disordering process. It was pointed out that the physical mechanism
distinguishing between first-or second-order transitions is probably related to the dependence
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of the interionic Coulomb interaction on the unit-cell dimensions. From this viewpoint a variety
of aspects of both the first- and second-order transition could be explained. One pronounced,
experimental observation could not be explained however, as discussed in the introduction:
the discontinuous drop of the Verwey temperature of at least 5% at the boundary between the
first- and second-order regimes.

By including band effects in the analysis of the Verwey transition an explanation for this
observation may be given. It is reasonable to assume thereby that the influence of band effects is
stronger for second-order transitions than for first-order transitions, especially when the band-
gap is large compared to the bandwidth. Below TV band effects become effective especially
in the case of a band overlap, as shown in the previous sections. The first-order transition,
being basically a spontaneous change from a highly ordered state into a completely disordered
state (still high asymmetry in the band occupations when the transition takes place) is not
likely to be associated with any band overlap at all below TV [8]. Within a gradual (second-
order) disordering process, however, the material goes through a stage of band overlap at
temperatures near the transition temperature. Using earlier results [8] for the description of
the first-order transitions and the model outlined in the previous sections, the experimental
values for TV as a function of the dopant concentration (or equivalently the cation deficiency
(d)) can now be reproduced with reasonable accuracy for both the first and second-order
regime.

For the sake of simplicity, we will totally neglect band effects in the first-order regime,
but count for them in the second-order regime. Furthermore, it can be shown that, within the
present model, volume effects, related to the electronic ordering (which modify the interionic
Coulomb interaction and probably also the bandwidth), do not affect the value of the Verwey
temperature in the second-order regime at all, whereas they do play a role in the first-order
regime [8]. Volume effects are in fact related to the volume dependence of β, which may be
expressed in terms of the change of the unit-cell volume (v) with respect to the disordered
states as β = β0 + β1v [8]. As β determines g at a specific temperature, a coupling exists
between g and v so that β can be considered as a function of g as well. In a disordering process
of second order, both g and v therefore evolve in a continuous way with temperature when
approaching TV , and the volume dilatation induced by the electronic order becomes smaller
and smaller (|β1v| 	 |β0|): i.e. the system approaches the limiting case of zero volume effects
where β is a constant. Similar considerations apply to the bandwidth. For temperatures near
TV (both smaller and larger) the system can therefore be considered as being without volume
effects, with β = β0, W = W0 being constants. The Verwey temperature is simply given by
equation (9). A more rigorous mathematical proof is given in appendix B. As an illustration of
these ideas, figure 4 shows the calculated variation of the order parameter with T in the case
of a second-order transition, both with volume affect (β1 > 0) taken into account and without
(β1 = 0). The relation between g and v was calculated from the results of [8] (W = constant
in the calculation). The curves are slightly different from a qualitative point of view. Volume
effects enhance the ordering below TV (the order parameter becomes larger for T < TV due
to volume effects) but TV is the same for both cases, however.

The expression for TV in the first-order regime, where volume effects do play a role,
reads [8]

TV = 1

7k

(
3

16
κβ2

1 +
6

4
β0

)
(10)

with κ representing the effective compressibility and β1 the volume derivative of β being
defined per electron (N.B. for convenience, in the present work the parameters β, β0 and β1

differ by a minus sign from the corresponding parameters in [8]).
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Figure 4. Variation of the order parameter for zero and non-zero value of the parameter β1
accounting for the variation of the Coulomb interaction with the unit-cell volume. Both curves
show the same value for TV .

The experimental observation of a transition from a first- to a second-order regime for
low concentrations (x) of cation dopants requires that 3

4κβ
2
1 is slightly higher than β0 for

undoped magnetite [8]. Both terms decrease with x, respectively according to a second-
order and first- order polynomial in x. A transition from a first- to a second-order regime
takes place when 3

4κβ1 = β0. The quadratic term in the polynomial expression for 3
4κβ

2
1 (x)

is significantly smaller than the linear term (x 	 1). For low dopant concentrations (x)
the nature of the variation of both β0 and β2

1 with x is therefore approximately still linear.
In case of Ti-and Zn-doped magnetites, theory predicts [7], on the basis of trapping of t2g
electrons,

β2
1 (x) = (1 − 9x)2β2

1 (0) β0(x) = (1 − 9x)β0(0). (11)

Substitution of these expressions into (10) yields the variation of TV with x, approximately
linear, in perfect agreement with the experimental observation in the first-order regime.

A final issue to be dealt with for a calculation of TV values of doped (or cation deficient)
magnetites is the influence of cation substitutions (deficiency) on the band structure, i.e. the
way in which the DOS will evolve upon slight changes in the stoichiometry. It we consider for
instance a very high dopant concentration, trapping a significant number t2g of electrons [7], the
spatial degrees of freedom of these electrons become considerably reduced and an electronic
structure different from that of pure magnetite will be the result. Both the bandwidth as well as
the DOS are likely to undergo some changes upon doping, which are, however, rather difficult
to describe in a simple model. We will therefore investigate two special (limiting) cases: one in
which the bandwidth will be held constant and the effect of cation doping consists of a change
of D only (thereby a = β/W decreases with increasing cation doping), and the opposite
scenario in which D remains constant and W changes proportional to the number of trapped
electrons, leaving a = β/W a fixed quantity. The model outlined in section 2 is capable of
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dealing with both of these cases and the experimental data will be fitted on the basis of both
scenarios.

Verwey temperatures were calculated by application of (10) and (11) to the first-order and
(9) and (11) to the second-order regime. In the first-order regime we have only β0(0) as an
adjustable parameter. The quantity κβ2

1 (0) can be directly related to β0(0) by combination of
equation (11), which describes the variation of β1 with x in terms of β1(0), and the requirement
that at the critical concentration (xc = 0.012) 3

4κβ
2
1 (xc) = β0(xc) [8]. In the second-order,

where equation (9) is used to calculate TV , we have a = β/W as a second adjustable parameter.
In the approach where W remains constant as a function of x, a = a(x) differs for each
concentration according to

a(x) = 1 − 8x

1 − 8 × 0.012
a(0.012) (12)

where a(0.012) is the value of a(x) at the critical concentration. In the case where W is
assumed to be proportional to the number of trapped t2g electrons (i.e. also proportional to β)
a remains fixed. The model parameters were fitted to the experimental data in a least squares
procedure by simultaneous adjustment of β0(0) and a (or a(0.012)) to match the data for both
regimes.

For constant W we find β0(0) = 0.04 eV and a(0.012) = 3.407 for the best agreement
between the calculated and experimental data (see figure 5(a)). A fairly good agreement
between theory and experiment is observable. ForW ∼ β we find β0(0) = 0.04 eV, a = 2.864
(figure 5(b)). The agreement between theory and experiment for the second-order regime is
even slightly better in this case than in figure 5(a) (for figures 5(a) and 5(b) the least squares
sums differ by approximately 50%). There is a plausible explanation for this improvement as
the case of constantW (figure 5(a)) is in fact the least realistic of the two situations considered
here. Note that the value for β0(0) found here is the same for both cases, probably because it
yields the best reproduction of the data in the first-order regime, for which, neglecting of band
effects, β0(0) is the only adjustable parameter.

The value β0(0) = 0.04 eV is consistent with experimental results reported in the
literature. Estimates of the Coulomb interaction parameter for pure magnetite can be obtained,
for instance, from measurements of the thermoelectric force as performed by Kuipers and
Brabers [16], giving β ≈ 0.05 eV ± 10%, whereas data obtained by photoemission
spectroscopy indicate an approximately similar value of β [17], which should be taken as
half of the gap in the emission spectrum. In the case of pure magnetite β is given by
β = β0(0) + κβ2

1 (0)/4 [8]. From equation (11) and the condition 3
4κβ

2
1 (0.012) = −β0(0.012)

we find 1
4κβ

2
1 (0) = 0.37β0(0), giving β = 1.37β0(0) = 0.055 eV, a value consistent with the

experimental data reported in [16] and [17].
Estimates for W can be derived straightforwardly from these values. For the situation of

constant W we have W = β0(0.012)/a(0.012) ≈ 0.012 eV and for the case where W ∼ β0

we find W(0) = β0(0)/a ≈ 0.014 eV. Note that these are very low values indeed, inherent to
a system of highly localized electrons such as magnetite.

The best fitting values of respectively a and a(0.012) mentioned above refer to the ratio
between β0(0) andW in pure magnetite. From these results we obtain a value of a′ = β/W ≈
4.6 in the case of a fixedW -value and a′ = β/W ≈ 3.9 forW ∼ β0, corresponding to estimates
for the Coulomb bandgap of pure magnetite (Ug = UC −W = β −W) of respectively 0.043
and 0.041 eV. It should be kept in mind that the values for both the gap and the bandwidth
are subject to a slight uncertainty because the bandwidth in the disordered state may differ
somewhat from those in the ordered state (see appendix B).
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(a)

(b)

Figure 5. Variation of TV in the first- and second-order regime. Datapoints correspond to either
Zn2+ or Ti4+ substituted magnetites (x = concentration) or to samples with a cation deficiency
d(Fe3−3dO4) having the same effect as Zn2+ and Ti4+ substitutions. The data were taken from [18].
The drawn lines represent the least-squares fits based on our model for constant W (a) or W ∝ β

(b).

4. Discussion and conclusions

A mean-field approach for the Verwey transition, advanced by the present authors in previous
papers [7, 8], has been extended by incorporation of a phenomenological treatment of
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band-structure effects. The t2g electrons are thereby distributed over two bands, the band
minima of which are shifted due to the interionic Coulomb interaction. In this respect the
model shows a conceptual similarity to the Stoner model for itinerant ferromagnetism. In
both our model for the Verwey transition outlined here and the Stoner model, ordering appears
as the result of an asymmetric occupation of two bands which are shifted due to a collective
interaction.

A special, exactly solvable case of the model occurs when a rectangular density of states
is assumed for both bands. An important observation from the solution to this case is that the
ratio a = β/W between the interionic Coulomb interaction and the bandwidth has a dramatic
effect on the value of the Verwey temperature near a ≈ 1.

The model has the following properties, which either give a satisfactory explanation to
various phenomena related to the Verwey transition or support earlier theoretical concepts.

(1) Only when a > 1 is the Verwey temperature finite. When a becomes unity the Verwey
temperature becomes zero, marking the boundary of the stability range of the Verwey
ordering. It is shown that this effect applies to a wide class of DOS functions assumed in
the calculations and may therefore be considered as a more general property of the band
model presented in this paper. In this respect it is crucial that no ordered self-consistent
charge distribution at T = 0 exists when a < 1. A resemblance to the Cullen–Callen
criterion is evident. This is particularly interesting because, although frequently used
for the interpretation of experimental data, the Cullen–Callen criterion was sometimes
criticized and questioned in the past [15]. Our model, however, supports the validity of
qualitative considerations based on the Cullen-Callen criterion, irrespective of questions
as to whether, for instance, the Hartree approximation which leads to the Cullen–Callen
criterion is an appropriate method to deal with the Verwey order [15].

(2) It can be shown that volume effects, which play a crucial role in the first-order transitions,
do not affect the Verwey temperature in the case of second-order transitions. On the other
hand, it is plausible that band effects only play an important role in case of the second-order
transitions. The model outlined in section 2 can therefore be applied straightforwardly
to the second-order regime, while the first-order regime can still be analysed in terms
of previous theoretical results. Consistent with experiment, the calculated Verwey
temperatures for two limiting cases (W ∝ β and W = constant) drop by approximately
5% when the boundary between the first- and second-order regime of the Verwey transition
is passed. Fairly good agreement between theory and experiment for both cases in achieved
by adjustment of the parameters accounting for the interionic Coulomb interaction and
the bandwidth. It is remarkable that the precise form of the density of states used in the
calculation is apparently of minor importance for the reproduction of the experimental
data. The value for the Coulomb interaction parameter, obtained from the fit of the model
parameters to the experimentally observed variation of TV with x, is consistent with
experiment. The value for the bandwidth obtained from the analysis of the experimental
data is extremely small and could be considered as a justification for the use of a two level
description for first-order transitions, for instance in pure (undoped and stoichiometric)
magnetite [8, 14]. Such small bandwidths also support a polaronic band picture which
is not accessible by conventional (ab initio) electronic structure calculations, which yield
much wider bands [19] or even no band splitting at all [20].

The apparent success of the present model to reproduce the values for the Verwey
temperature correctly in both the first- and the second-order regime shows that this model
meets some basic aspects of the mechanisms controlling the Verwey transition. Generally, we
may conclude that the work presented in this paper provides a valuable extension to our previous
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mean-field analyses of the Verwey transition [7, 8]. Altogether, many aspects of the Verwey
transition in magnetite can now be interpreted fairly well in terms of a simple theory, which
apparently captures however the most basic physical concepts behind the Verwey transition.

Appendix A. Number of electron states per volume unit in a single band

Both sublattices a and b are equivalent in a crystallographic sense. Not only do symmetry
operators S connect the sites of a single sublattice (Saa = Sbb) but there also exists a symmetry
operator Sab, connecting the a sites to the b sites. Generally, such symmetry operators can
be constructed from translations followed by rotation(s). We consider symmetry operators
for which S �= S−1, i.e. operators for which S2 connects three different sites. Multiplication
of such operators can be viewed as a propagation through the lattice. In case of an ordered
state there is a distinction between the a and the b sublattice and we may define Sab such that
S2
ab = Saa = Sbb. In the case of a disordered state, the distinction between the a and the b

sublattice disappears and we can choose Saa, Sbb and Sab such that Saa = Sbb = Sab.
In general, the crystal Hamiltonian is invariant under a symmetry operation Si = RSaa,bb

consisting of one of the operatorsSaa,bb, connecting two sites of the same sublattice, followed by
a subsequent rotationR. The invariance of the Hamiltonian under Sn implies that the (effective)
single-electron wavefunctions ψE,k are eigenfunctions of Si as well: SiψE,k = λψE,k .
The operators Saa , Sbb and Sab can be defined such that they connect sites along a main
crystallographic direction c. When periodic boundary conditions are imposed along this
direction over large numbers of unit cells N we have

Snioψo,E,k = λnoψo,E,k = ψo,E,k (A1)

S2n
id ψo,E,k = λ2n

d ψo,E,k = ψo,E,k (A2)

for the ordered and the disordered state respectively. n is related to N and to the number of
a–b pairs, nab, per unit cell in the c direction simply by n = Nnab/2, basically representing
the number of electrons. An analogy to Bloch’s theorem exists in that way that equations (A1)
and (A2) can only be fulfilled when respectively

λo = eiφ0 einφo = 1 φo = 2π j

n
(A3)

for the ordered state and

λd = eiφd ei2nφd = 1 φd = π j

n
(A4)

for the disordered state (j = integer). So, the effect of Si acting on ψ is a phase rotation
corresponding to an angle φ. Each value of φ corresponds to a specific eigenstate of the
Hamiltonian.

A single band is related to a full cycle�φ = 2π of the phase angle. It can then be inferred
immediately from (A3) and (A4) that in the disordered state the number of eigenfunctions
forming a single band is twice the number of electrons i.e. 2n. In the ordered state however,
only n eigenfunctions fill a single band. So, due to electronic ordering the half-filled metallic
band splits up into two bands with an equal number of n electron states per band, regardless
of the actual geometry of the sublattices (a, b). In the case of a gap between the two bands,
the lower band is completely filled and the upper completely empty so that an insulating state
emerges.
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Appendix B. The influence of volume effects on TV in the case of a second-order
transition

In section 2, the expression for TV is derived from the condition ∂F (g)/∂g|g=1/2 = 1. In the
corresponding analysis of TV , the Coulomb-interaction parameter as well as the bandwidth
were supposed to be constant. However, when volume effects are taken into consideration in the
description of the Verwey temperature, this is no longer the case. Volume effects connected
with the Verwey transition arise from the coupling between g and the volume, established
by the volume dependence of the interionic Coulomb interaction and the bandwidth. As a
consequence, β will generally depend as well on g in this case.

It is most convenient then to express β as a series expansion around g = 1/2:

β = β(g) = β0 +
∞∑
n=1

βn(g − 1
2 )
n (B1)

so that the expression for UC = β(2g − 1) becomes

UC =
(
β0 +

∞∑
n=1

βn(g − 1
2 )
n

)
(2g − 1) =

∞∑
n=0

β ′
n(g − 1

2 )
n+1 (B2)

where β ′
n = 2βn for n � 0. Usually only the lowest order terms are relevant, leading to a

continuous variation of β with g [8].
The bandwidthW can also be written as a series expansion ing aroundg = 1/2. Symmetry

requires that this expansion contains only even terms:

W(g) =
∑
n

w2n(g − 1
2 )

2n (B3)

where n � 0. The reason for the absence of odd terms in this series is the fact that there are two
equivalent ordering modes (g = g0 � 1/2 and g = 1−g0 � 1/2)which should correspond to
the same value ofW at a given value of the order parameter r = |2g− 1|. Due to the absence
of a linear term in (B3), the influence of changes in the band structure vanishes rapidly with
increasing disorder.

For an analysis of the Verwey temperature similar to the one outlined in section 2, we
introduce a new function F ′(g, β(g)), obtained by substitution of β(g) and W(g) in the
expression for F (equation (6)). As a function of g, F ′ behaves qualitatively similar to the
function F , since only the lowest-order terms in (B2) and (B3) are relevant in the vicinity of
TV , leading to a monotonic variation of β with g. TV can therefore again be obtained from the
condition ∂F ′/∂g|g=1/2 = 1. For g = 1/2, ∂W/∂g vanishes because of (B3) so that we have

∂F ′

∂g

∣∣∣∣
g=1/2

= 1

2W

eW/2kT − e−W/2kT

2 + eW/2kT + e−W/2kT
∂UC

∂g

∣∣∣∣
g=1/2

. (B4)

It can be seen immediately from (B2) that when g = 1/2:

∂UC

∂g

∣∣∣∣
g=1/2

= 2β0 (B5)

as all terms for n > 0 arising from UC vanish. This result yields, when substituted into (B4),
exactly equation (7) with β = β0, which directly leads to equation (9) for TV . Equation (9)
was derived without taking any volume effects into account. Therefore, TV is not affected by
volume effects in the case of a second-order transition and is determined solely by the value for
β in the disordered state (β0) and the ratio between the Coulomb interaction and the bandwidth
(W0) in the disordered state (a).
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